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ABSTRACT 

This paper combines input–output analysis with non-negative matrix factorization analysis 

widely used in the image segmentation and attempts to find the target industrial groups 

(industrial clusters) in Japan that have intensive CO2 emissions. We generalized the industrial 

cluster analysis proposed by Kagawa et al. (2012) to identify environmentally-important 

industrial clusters from the entire economy. Furthermore, we estimated the optimal number of 

industry clusters using the Newman–Girvan modularity index. The empirical results obtained 

using the 2005 Input–Output Tables of Japan show that for example in automobile supply 

chain, the optimal number of industry clusters is 19, and 4 industry clusters are playing a key 

role in CO2 emission reduction. We also found the CO2 intensive clusters from the supply 

chains of other commodities and ranked the identified clusters on the basis of their 

within-cluster effects. 

 

Keywords: CO2, industry cluster, supply chain, multiway cut approach, nonnegative matrix 

factorization 
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1. Introduction 

 

For climate change policies, Japanese government has proposed the “Sectoral Approaches” 

which are tools to reduce CO2 emissions with a focus of CO2 intensities of the particular 

sectors in question. However, the “Sectoral Approaches” do not afford an incentive to 

cooperate with other sectors on the carbon mitigations. In contrast, the “Cluster Approach” is 

clearly one of the alternatives. In the field of green supply-chain management, cooperation 

between industries within a supply chain is also recognized as an important approach to 

collectively reducing costs, energy consumption, and net environmental impacts (Simpson 

and Samson, 2008; Schliephake et al., 2009).  

 

This paper attempts to analyze target industrial groups which can reduce CO2 emissions 

effectively. To find the target industrial groups (industrial clusters), this paper combines 

input–output analysis (Miller and Blair, 2009) with non-negative matrix factorization analysis 

widely used in the image segmentation (e.g., Lee and Seung, 1999, 2001; Ding et al., 2005, 

2008), which is useful in partitioning a network into sub-networks under a certain cut 

criterion and which detects industrial clusters in Japan that have intensive CO2 emission. 

 

To the best of our knowledge, Kagawa et al. (2012) is first attempt to identify 

environmentally-important industrial clusters by combining input-output analysis with 

non-negative matrix factorization analysis. This paper generalized the industrial cluster 

analysis proposed by Kagawa et al. (2012) and determined the optimal number of clusters 

using the Newman–Girvan modularity index (Newman and Girvan, 2004). Finally, this paper 

applies the network partition approach to the economic input–output table to find 
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environmentally important groups of industries from the inter-industry networks. We 

demonstrate the usefulness of the method using a case study that identified CO2-intensive 

industry clusters in the Japanese supply chain associated with various final commodities. 

Moreover we ranked the identified clusters on the basis of their within-cluster effects. 

 

This paper is organized as follows: Section 1 describes the background, Section 2 generalizes 

the industrial cluster analysis proposed by Kagawa et al. (2012), Section 3 illustrates the data 

construction, Section 4 presents a case study, and Section 5 concludes the paper. 

 

 

2. Methodology 

 

2.1. Simplified input–output approach 

 

We first replicate the industrial cluster analysis proposed by Kagawa et al. (2012) and 

generalized the cluster method. We start with the inter-industry delivery matrix, ( )=
ij
zZ

 

( , = 1,…, )i j n , representing the input of a commodity from industry i to industry j (Miller and 

Blair, 2009), where n is the number of industries. It should be noted that the flow is ordinarily 

expressed in monetary units (e.g., US dollars). If the output vector showing the output of 

industry j is defined as ( )=
j
xx , the input coefficient matrix can be obtained by 

( ) ( )ij ij j
a z xA = =

 
( , = 1,…, )i j n . 

ija  denotes the input from industry i necessary for 

producing a unit of output of industry j. 
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Here, let us suppose that final consumers such as households buy a commodity produced by 

the 0thj  industry. Then we can define the final demand on the 0thj  industry as 
0j
f and the 

( )1n×  final demand as 
0j
f , where the element associated with the 0thj  industry is 

0j
f  

and all other elements are zero. Since the 0thj  industry produces exactly the amount of the 

final demand, 
0j
f , the output of the industry is straightforwardly estimated as 

0j
f  or, 

alternately, ( )
0

diag jf , the diagonalization of vector 
0j
f , for which only the 0 0( , )j j

 
element 

of the matrix is non-zero. The 0thj  industry requires materials and parts in order to produce 

the final demand 
0jf . The inputs purchased by the 0thj  industry can be estimated as 

( )0
diag jA f . Since the materials and parts are also produced by using other materials and parts, 

we can similarly estimate the amount of inputs required for producing the demand for these 

materials and parts as ( )0
diag jA Af . 

 

Finally, we have the following input–output model (Ozaki, 1980; Suh, 2005; Nakamura et al., 

2011). 

 

( ) ( ) ( )0 0 0 0= diag + diag + diag
j j j j

B f A f A Af          (1) 

 

The matrix 0 0= ( )
j j

ijbB  shown in eq. (1) can be regarded as a weighted directed graph 

showing the input from industry i, which was purchased to produce a commodity of industry j, 

required for the 0thj  industry to produce the final demand for its good. 
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If the industrial CO2 emission factor representing the CO2 emission per unit of output of 

industry i is defined as vector ( )= iααααα , the CO2 emissions directly induced by the 

inter-industry deliveries from industry i to industry j associated with the final demand on the 

0thj  industry can be formulated as the following matrix: 

 

( ) ( ) ( )0 0 0 0 0= diag( ) diag( )diag +diag( ) diag +diag( ) diag
j j j j j

G B f A f A Af=α α α αα α α αα α α αα α α α     (2) 

 

The graph = ( , )G V E  can be derived from 0 0= ( )
j j

ijgG  such that the set of vertices is 

={1,…, }V n , the set of directed edges is ( ){ }0= , | 0
j

ijE i j g > , and the weight assigned to edge 

( , )i j  is 0j

ijg . 

 

2.2. Strength of relations matrix 

 

In this study, we consider the CO2 emissions associated with the inter-industrial flow between 

industry i and industry j. More specifically, we used the symmetric adjacency matrix 

( )0 0* *=
j j

ijgG  ( ), =1,…,i j n  (strength of relations matrix hereinafter), which can be derived 

from 0jG  as follows: 

 

( )
( )

0 0 0

0

*

*

=

= 0 =

j j j

ij ij ij

j

ij

g g g i j

g i j

 + ≠



                          (3) 

 

The strength of the relations matrix 0*jG  represents the strength of the CO2 emissions 
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associated with input exchanges between industries. In addition, the method presented here 

can be applied to any factor input, including energy, water, and land. 

 

2.3. Network partition approach 

 

Following previous studies (Shi and Malik, 2000; von Luxburg, 2007; von Luxburg et al., 

2008; Zhang and Jordan, 2008), the clustering problem is designed to find exhaustive and 

mutually exclusive K subsets, =｣ {
1
C ,

2
C ,…, KC }, such that not only total amount of CO2 

emission intensiveness of industrial relations between different groups is minimized, while 

the total amount of the within-group CO2 intensity is maximized. This combinatorial 

optimization problem can be formulated as follows: 

 

 

( )

1

1

( )
Minimize =

subject to = , ; , 1,…,

=
∈

=∪ ∩ = ∅ ≠ =

∑ ∑
k

K
k

k u

u C

K

k k k l

Cut C
Ncut

d

C V C C k l k l K

  (4) 

 

where ( ) 0*=
k k

j

k uv

u C v C

Cut C g
∈ ∉
∑ ∑  (i.e., the numerator in eq. (4)) is the cut value giving the CO2 

emission intensity of the industrial relations between industrial group kC  and the rest of the 

industrial network and 0*j

u uv

v V

d g
∈

=∑  in eq. (4) represents the weighted degree of each 

industrial sector u. The objective function of eq. (4) is frequently referred to as a normalized 

cut value (Ncut value). 

 

Noting that the cut value can also be formulated as ( ) 0 0* *=
k k k

j j

k uv uv

u C v V u C v C

Cut C g g
∈ ∈ ∈ ∈

−∑∑ ∑ ∑  
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0 0*=
k k k

j j

u uv

u C u C v C

d g
∈ ∈ ∈

−∑ ∑ ∑ , eq. (4) can be rewritten using the following matrix notation (Zhang 

and Jordan, 2008): 

 

 
( ) ( ){ }
{ }

0 0 0
1

*Minimize = Tr

subject to , 0,1

j j j

n K

k n

Ncut H D G H H D H

H1 = 1 H

−

×

′ ′−

∈
  (5) 

 

where [ ]1 2
= , ,…,

n
′H h h h  denotes the indicator matrix with the binary indicator vector 

{ } 1
0,1h

×
∈

K

i
 for industry i, Tr represents the matrix trace operator, 0jD  the diagonal matrix 

whose diagonal elements are weighted degrees 0j

ud , 1
k
 the ( )1×k  vector of ones, 1

n
 the 

( )1×n  vector of ones, and the prime represents the matrix transpose operator. The matrix 

0 0*j j
D G−  is often referred to as the Laplacian matrix

1
 and is normally denoted by 

( )0

0 1,2, ,
j
j nL = L  in spectral graph theory. An important point is that the combinatorial 

optimization problem in eq. (5) is an NP-complete problem. 

 

One method for solving eq. (5) is to relax the indicator matrix H to take on real values, by 

which the combinatorial optimization problem is transformed into a generalized eigenvalue 

problem (Shi and Malik, 2000; von Luxburg, 2007; von Luxburg et al., 2008; Zhang and 

Jordan, 2008). This generalized eigenvalue problem is also known as the spectral relaxation of 

the original problem. However, switching to the spectral relaxation immediately implies that 

we are ignoring the nonnegativity constraints on the indicator matrix H. Therefore, as pointed 

in Ding et al. (2008), we cannot verify that the solutions of the generalized eigenvalue 

                                                   
1 See e.g., Fiedler (1973) for the property for the Laplacian matrix. 
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problem bring about the best partitions of the network. 

 

Considering this important methodological problem, in the present study, we employed 

another approach, the multiway cut approach using nonnegative matrix factorization, recently 

proposed by Ding et al. (2005). A corollary for the relationship between eq. (5) and 

nonnegative matrix factorization (Lee and Seung, 1999, 2001) as widely used in information 

technology applications is presented as follows. 

 

Corollary (Ding et al., 2005). 

The optimization problem in eq. (5) is equivalent to the following nonnegative matrix 

factorization problem (NMF problem): 

 

 ( ) ( )0 0 0

2
1 2 1 2

*

1Minimize =
j j j

F

J
H 0

D G D HH
− −

≥
′−   (6) 

 

where 
2

•  is the Frobenius norm
2
.  

 

As in Lee and Seung (1999, 2001), the optimal solution of the matrix ( )=
ij
hH  can be easily 

obtained by the following update rule (Ding et al., 2005): 

 

( ) ( ){ }
( )

0 0 0
1 2 1 2

*

1

j j j

ij

ij ij

ij

h h

D G D H

HHH

− − 
 

← − + ′ 
 

β β

                    

(7) 

                                                   

2 The Frobenius norm of a square matrix AAAA of order n is defined as 
2 2

1 1

n n

ijF
j i

a
= =

= ∑∑A . 
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where 0 1β< ≤ . Following Ding et al. (2008), we set as 0.5=β  and the initial matrix 
0

H  

was obtained by the following equation, 
0

0.2H E J= +  where { }0,1E
×

∈
n K

 is the ( )×n K  

indicator matrix approximated by the spectral clustering with K-means method (see Zhang 

and Jordan (2008) for the spectral clustering with K-means method) and J  is the ( )×n K  

matrix of ones. Iterative updating yields the matrix ( )ˆˆ =
ij
hH , which is an approximated 

indicator matrix with nonnegative values. The ( )1K ×  vector ( )ˆ 1,…,i nh  in the estimated 

indicator matrix Ĥ  can be regarded as a feature vector of vertex i (i.e., industrial sector i). 

Applying the K-means method to the data matrix Ĥ , we finally find K sets (clusters) such 

that the objective function 
2

2

1

ˆ=
k

K

i k

k i C

J
= ∈

−∑∑ h m  with the cluster center 
1 ˆ=

k

k i

i CkC ∈
∑m h  is 

minimized. Here, kC  is the number of industrial sectors belonging to the kth cluster. Since 

initial cluster centers are randomly selected in the K-means method, different random 

initializations yield different cluster assignments. In order to find the best partition of the 

network, we obtained potential cluster assignments { }0 0 0 0# # # #

1 2
, ,…,

j j j j

K
C C C=｣  by using the 

K-means algorithm M times and computed the normalized cut value under each cluster 

assignment. We chose an optimal cluster assignment { }0 0 0 0, , , ,

1 2
, ,…,

j opt j opt j opt j opt

K
C C C=｣  from 

the M results such that the computed normalized cut value is minimized. 

 

2.4. Determining the number of clusters 

 

Using the above multiway cut approach, we can find the optimal cluster assignment for any 
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number of clusters, K. However, an important problem is that the multiway cut approach is 

silent about determining the number of clusters. For this methodological problem, Newman 

and Girvan (2004) developed a useful index, the modularity index, to determine the plausible 

number of clusters detected in the network partition analysis. The modularity index for any K 

clusters can be formulated as follows: 

 

( ) ( ){ }
0 0

, , ,0 0 0
0 0 0

0 0

2
* *

2

* *1 1

1 1 1 1

=
j opt j opt j opt

k k k

j j

ij ij
K Kj Vi C j C i Cj j j

kk kn n n n
j jk k
ij ij

i j i j

g g

Q K p q

g g

∈∈ ∈ ∈

= =

= = = =

  
    − = − 

  
    

∑ ∑ ∑ ∑
∑ ∑

∑∑ ∑∑
         

(8) 

 

where 0j

kkp  represents the within-cluster ratio for the kth cluster and 0j

kq  represents the 

betweenness ratio for the kth cluster. An important point is that the best cluster assignment 

should maximize the modularity index such that the within-cluster ratio is high and the 

betweenness ratio is low. In practice, Newman and Girvan (2004) and Newman (2004) 

demonstrated that the highest 0jQ  value indicates well-separated clusters. In the present 

study, we use the modularity index to determine the optimal number of clusters, 0 ,j opt
K . Here 

it should noted that the within-cluster effect representing the total CO2 emission within a 

cluster is formulated as 0

, ,0 0

*

j opt j opt

k k

j

ij

i C j C

g

∈ ∈

∑ ∑ . Finally, we identified the most CO2-intensive 

cluster ,0
j opt

k
C and its relevant final commodity 

0
j  in the entire economy such that the 

within-cluster effect is maximized as follows. 

 

( ),0 0

, ,0 0

*

0, argmax
j opt j opt

k k

j opt j

k ij

i C j C

C j g

∈ ∈

∈ ∑ ∑　

                   

(9) 
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3. Preparation of basic data 

 

We examined industrial CO2 emissions in tons CO2 induced by production activities of the 

Japanese industries. As source data, we used the Japanese Benchmark Input–Output Table for 

the producer prices in 2005 (393 commodity sectors) provided by the Ministry of Internal 

Affairs and Communications of Japan and the greenhouse gas emission (GHG) database 

provided by the National Institute for Environmental Studies of Japan (Nansai et al., 2007, 

2009). For the analysis, the CO2 emissions from the combustion of primary and secondary 

energy resources in Table A are considered. 

 

From the GHG database, the total CO2 emissions of each sector was calculated by summing 

up CO2 emissions associated with the energy inputs. The CO2 emission coefficient of industry 

i, denoted 
i

α , was then obtained by dividing the industrial emissions by the quantity of 

industrial production. Finally, we obtained the diagonal matrix with industrial emissions and 

constructed the ( )393 393×  adjacency matrix ( )0

0 1,2, ,393
j
jG = K  by substituting the 

diagonal emission coefficient matrix ( )diag αααα , the input coefficient matrix A  from the 

benchmark input–output table, and the diagonalized matrix for the any commodity domestic 

final demand (i.e., household consumption expenditure of any final commodity + fixed capital 

formation of any final commodity + increase in stock of any final commodity) ( )0diag
j
f  into 

the right-hand side of eq. (2). Furthermore, the symmetric adjacency matrix 0*j
G

 
was 

obtained using eq. (3) and then the degree matrix 0jD  was obtained from the ( )393 393×  

symmetric adjacency matrix. 
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4. Result and discussion 

 

We found CO2-intensive industrial clusters from the entire Japanese economy using the 

method explained in Section 2. Moreover we also ranked the identified clusters on the basis of 

their within-cluster effects. Finally, identifying environmentally-important industrial clusters 

in Japan, we suggested the policy to reduce the emissions and sustainable cooperation among 

different industries. 
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